Pattern Recognition using Normalized Feature Vectors Analysis
نویسندگان
چکیده
منابع مشابه
Pattern Recognition with Slow Feature Analysis
Slow feature analysis (SFA) is a new unsupervised algorithm to learn nonlinear functions that extract slowly varying signals out of the input data. In this paper we describe its application to pattern recognition. In this context in order to be slowly varying the functions learned by SFA need to respond similarly to the patterns belonging to the same class. We prove that, given input patterns b...
متن کاملPattern recognition using discriminative feature extraction
We propose a new design method, called discriminative feature extraction (DFE) for practical modular pattern recognizers. A key concept of DFE is the design of an overall recognizer in a manner consistent with recognition error minimization. The utility of the method is demonstrated in a Japanese vowel recognition task.
متن کاملPattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature
Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...
متن کاملFault Diagnosis Using Feature Vectors and Fuzzy Fault Pattern Rulebase
Feature Vectors. The required inputs for the diagnostic models are termed the feature vectors. The feature vectors contain information about the current fault status of the system. Feature vectors may contain many sorts of information about the system. This includes both system parameters relating to fault conditions (bulk modulus, leakage coefficient, temperatures, pressures) as well as vibrat...
متن کاملpattern recognition in maintenance data using methodologies data minitng (cade study isfahan regional power electric company)
فعالیت های نگهداری و تعمیرات اطلاعاتی را تولید می کند که می تواند در تعیین زمان های بیکاری و ارایه یک برنامه زمان بندی شده یا تعیین هشدارهای خرابی به پرسنل نگهداری و تعمیرات کمک کند. وقتی که مقدار داده های تولید شده زیاد باشند، فهم بین متغیرها بسیار مشکل می شوند. این پایان نامه به کاربردی از داده کاوی برای کاوش پایگاه های داده چندبعدی در حوزه نگهداری و تعمیرات، برای پیدا کردن خرابی هایی که موجب...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indian Journal of Science and Technology
سال: 2016
ISSN: 0974-5645,0974-6846
DOI: 10.17485/ijst/2016/v9i25/93808